A Deterministic Kaczmarz Algorithm for Solving Linear Systems

نویسندگان

چکیده

We propose a new deterministic Kaczmarz algorithm for solving consistent linear systems $A\mathbf{x}=\mathbf{b}$. Basically, the replaces orthogonal projections with reflections in original scheme of Stefan Kaczmarz. Building on this, we give geometric description solutions systems. Suppose $A$ is $m\times n$, show that generates series points distributed patterns an $(n-1)$-sphere centered solution. These lie evenly $2m$ lower-dimensional spheres $\{\S_{k0},\S_{k1}\}_{k=1}^m$, property any $k$, midpoint centers $\S_{k0},\S_{k1}$ exactly solution With this discovery, prove taking average $O(\eta(A)\log(1/\varepsilon))$ $\S_{k0}\cup\S_{k1}$ effectively approximates up to relative error $\varepsilon$, where $\eta(A)$ characterizes eigengap matrix produced by product $m$ generated rows $A$. also analyze connection between and $\kappa(A)$, condition number In worst case $\eta(A)=O(\kappa^2(A)\log m)$, while random matrices $\eta(A)=O(\kappa(A))$ average. Finally, indeed solves system $A^T W^{-1}A \mathbf{x} = A^T W^{-1} \mathbf{b}$, $W$ lower-triangular such $W+W^T 2AA^T$. The one studied. numerical tests indicate has comparable performance randomized (block) algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A METHOD FOR SOLVING FUZZY LINEAR SYSTEMS

In this paper we present a method for solving fuzzy linear systemsby two crisp linear systems. Also necessary and sufficient conditions for existenceof solution are given. Some numerical examples illustrate the efficiencyof the method.

متن کامل

The Block Kaczmarz Algorithm Based On Solving Linear Systems With Arrowhead Matrices∗

This paper proposes a new implementation of the block Kaczmarz algorithm for solving systems of linear equations by the least squares method. The implementation of the block algorithm is related to solving underdetermined linear systems. Each iteration of the proposed algorithm is considered as the solution of a sub-system defined by a specific arrowhead matrix. This sub-system is solved in an ...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

a method for solving fuzzy linear systems

in this paper we present a method for solving fuzzy linear systemsby two crisp linear systems. also necessary and sufficient conditions for existenceof solution are given. some numerical examples illustrate the efficiencyof the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2023

ISSN: ['1095-7162', '0895-4798']

DOI: https://doi.org/10.1137/21m1463306